IDP am Institut für Werkzeugmaschinen und Betriebswissenschaften
Das iwb bietet spannende interdisziplinäre Projekte (IDP) in den Themenbereichen Deep Learning, Digitale Zwillinge, Predictive Maintenance und Cyber-Physische Systeme für Informatikstudent*innen an. Gemeinsam mit einem wissenschaftlichen Mitarbeiter wird ein Projektthema ausgearbeitet, welches zudem die anwendungsorientierte und hardwarenahen Arbeit an den Maschinen in der Werkshalle des iwb beinhaltet.
Neben der Projektarbeit wird eine begleitende Lehrveranstaltung des iwb Ihrer Wahl besucht.
Das iwb bietet zudem interessante Themen für hilfswissenschaftliche Tätigkeiten und Abschlussarbeiten an, welche auch von Informatikstudent*innen bearbeitet werden können.
Im Folgenden sind die Themenbereiche mit ihren Anwendungsbereichen aufgeführt. Bei Interesse kontaktieren Sie bitte den entsprechenden wissenschaftlichen Mitarbeiter:
Benchmarking eines Chatbots für die Produktion
In modernen Produktionsumgebungen werden Menschen zunehmend mit anspruchsvollen Aufgaben konfrontiert, die Fähigkeiten wie das Navigieren in großen Informationsbeständen oder die Bedienung komplexer Maschinen erfordern. Um dieser Herausforderung zu begegnen, wird im Rahmen eines Forschungsprojekts ein modularer Chatbot entwickelt, der Menschen bei verschiedenen Produktionsaufgaben unterstützt, indem er Daten abruft und Aktionen ausführt. Um den Chatbot in einer realen Produktionsumgebung zu bewerten, ist eine strukturierte Testmethodik erforderlich.
Ziel dieses IDPs ist es, einen bestehenden Chatbot hinsichtlich seiner Eignung für den Einsatz in Produktionsumgebungen zu evaluieren. Die notwendigen Schritte zur Erstellung von Testanfragen, Auswertung der Antworten und Analyse der Ergebnisse wurden bereits theoretisch beschrieben und sollen nun implementiert werden. Dies umfasst das entwickeln automatisierter Testing-Tools, das Durchführen von Umfragen und die Auswertung der erhobenen Daten.
Lasse Streibel
Python | Data analysis in Robotics
Industrieroboter werden zunehmend zum Fräsen eingesetzt und zeichnen sich durch niedrige Investitionskosten, einen großen Arbeitsraum und eine hohe Flexibilität gegenüber herkömmlichen Bearbeitungszentren aus. Um externe Kräfte durch den Fräsprozess auszugleichen, wird die Roboterdynamik mit Hilfe von Robotermodellen, die am iwb entwickelt wurden, simuliert.
Im Rahmen des IDP-Projekts sollen bereits aufgenommene Messdaten, welche zur Berechnung der Steifigkeit des Roboters verwendet werden können, ausgewertet werden. Beispielsweise sollen durch gezielte Filterung der Daten Aussagen über die Qualität der Daten getroffen werden. Im Rahmen dieser Ausschreibung haben Informatikstudierende die Möglichkeit, ihr Wissen anwendungsnah einzusetzen und sich im Fachbereich der Robotik weiterzubilden.
Magdalena Bloier
Einsatz von Deep Learning in der Fügetechnik
Das Rührreibschweißen (engl.: Friction Stir Welding, FSW) ist ein Pressschweißverfahren, welches sich im Flugzeug- und Raketenbau etabliert hat. Auch in der Elektromobilität gilt das FSW als Leichtbaubefähiger. Der Bedarf an qualitativ hochwertigen Produkten und kostengünstiger Fertigung erhöht jedoch die Notwendigkeit zur Inline-Prozessüberwachung, die am iwb weiterentwickelt wird. Durch eine aussagekräftige und valide Auswertung der Prozessdaten können andere, dem Schweißen nachfolgende Prüfungen, ergänzt bzw. substituiert werden. Zur Überwachung können Zeitreihen-Daten (Prozesskräfte, Temperaturen, …) und auch Kamera-Daten genutzt werden. Verschiedenste Methoden der Datenverarbeitung von der Statistik bis hin zu Machine-Learning-Ansätzen werden hierbei praxisnah zur Erkennung von Mustern und Zusammenhängen zwischen den aufgenommenen Daten und Prozessgrößen und -effekten eingesetzt. Informatikstudierende haben im Rahmen eines IDPs bei uns die Möglichkeit ihr Wissen im Bereich der Informationstechnik anwendungsnah einzusetzen und sich zusätzlich dazu in einem bedeutenden Fachbereich der Produktionstechnik weiterzubilden.
M.Sc. Fabian Vieltdorf
Implementation Digitaler Zwillinge für Werkzeugmaschinen, Industrieroboter und Bearbeitungs-prozesse
Der Digitale Zwilling ist eine virtuelle Repräsentation einer Werkzeugmaschine, der die Anlage während ihres gesamten Lebenszyklus begleitet, das aktuelle Maschinenverhalten abbilden und den zukünftigen Maschinenzustand prognostizieren kann. Forschungsschwerpunkte am iwb sind die softwarebasierte Modellbildung und Visualisierung zur virtuellen Inbetriebnahme, die datengetriebene Anpassung des virtuellen Maschinenmodells aufgrund von zeit-veränderlichen Effekten der physischen Maschine und cloud-basierte Anwendungen zur Überwachung des Maschinenzustandes. Im Rahmen verschiedener IDPs sollen Algorithmen und Methoden untersucht, entwickelt und angewendet werden, und die Handhabbarkeit, die Genauigkeit und Vorhersagekraft der Digitalen Zwillinge zu steigern.
M.Sc. Jannik Hüllemann
jannik.huellemann(at)iwb.tum.de
Predictive Maintenance in der Produktionsplanung und -steuerung
Der Einsatz von Predictive Maintenance bzw. der vorzeitigen Wartung birgt großes Potenzial, Maschinenausfälle zu vermeiden und den Produktionsablauf zu optimieren. Am iwb wird mittels künstlicher Intelligenz die Restlebensdauer von Komponenten vorhergesagt und diese Information genutzt, um Produktion und Instandhaltung integriert zu planen. Zur Vorhersage der Restlebensdauer kommen statistische Methoden, Verfahren des Maschinellen Lernens und auch klassische mathematische Optimierungsansätze zum Einsatz. Relevant für den Einsatz dieser Algorithmen sind zudem der Aufbau von Daten-Pipelines zum Auslesen und Speichern der Sensormesswerte als auch die Implementierung von Benutzeroberflächen zur Konfiguration der Algorithmen und Darstellung der Ergebnisse. Ein IDP kann bei Bedarf und Interesse auch mehrere Themen abdecken.
Cyber-Physische Systeme in der Montagetechnik und Robotik
In der Industrie und am iwb spielen seit einigen Jahren Themen im Bereich der Digitalisierung, Kommunikationstechnologie und dezentralisierten Produktionssysteme eine entscheidende Rolle. Speziell für rekonfigurierbare Produktionssysteme sind diese Themen notwendig, da Unternehmen aufgrund der hohen Variantenvielfalt und immer kundenindividuelleren Produkten mit neuartigen innovativen Lösungen überzeugen müssen. In diesem Zusammenhang fällt der Begriff Plug&Produce ins Gewicht, der Ansätze im Bereich der automatisierten Planung, Inbetriebnahme und Überwachung von Produktionssystemen berücksichtigt. Im Rahmen verschiedener IDPs (Interdisziplinärer Praktika) sollen Konzepte und Implementierungen in folgenden Themenbereichen bearbeitet werden: intelligente Datenverarbeitung, dezentrale Kommunikationsarchitekturen (z. B. OPC UA), automatisierte Montage-/Anlagenplanung und aufgaben-/skillorientierte Programmierung.
M.Sc. Stephan Trattnig